Towards a better understanding of preimplantation genetic screening and cumulative reproductive outcome: transfer strategy, diagnostic accuracy and cost-effectiveness
نویسنده
چکیده
A decision model was constructed to compare genetic testing and not testing, for the transfer of all suitable embryos, one at a time, from a cycle with up to ten embryos, until a first live birth was achieved or there were no more embryos available (a full cycle). Two strategies were investigated: (i) a fresh transfer with subsequent serial warmed cryopreserved embryo replacement, and (ii) freeze-all prior to serial embryo replacement. Sensitivity analyses were performed to assess the effect of embryo warming survival and diagnostic accuracy on cumulative rates. Cost-effectiveness was assessed using the incremental cost-effectiveness ratio for a live birth event, and a clinical miscarriage avoided. Reproductive outcome probabilities were obtained from published prospective non-selection studies, and costs from websites and publications. Given 100% embryo warming survival and no false abnormal genetic test results, the live birth rate for a full cycle was the same with and without testing for both transfer strategies. Compared to not testing, it was theoretically possible for testing to be favoured for live birth only for the fresh and frozen transfer strategy, where more than one embryo was available, and dependent on the efficiency of warming survival and the positive predictive value of the test; however, this was unlikely to be cost-effective from a society perspective without a substantial reduction in genetic testing costs. For both transfer strategies, when more than one embryo was available, testing was more likely to achieve a live birth event following the first attempt with fewer attempts required overall. Testing was likely to be effective to avoid a clinical miscarriage but also to be expensive from a society perspective compared to the cost of dilation and curettage.
منابع مشابه
I-34: NRY Haplotype Analysis: towards A Better Understanding of The Genetic Basis of Spermatogenic Failure
It has been established that the Y chromosome carries genes required for spermatogenesis and male fertility. For many decades worldwide screening for gene identification has been conducted in research laboratories. However, it has been a difficult process in identifying such genes (i.e. causative mutations) which could explain the phenotypic variation and could be potentially used as markers fo...
متن کاملTowards a better understanding of preimplantation genetic screening for aneuploidy: insights from a virtual trial for women under the age of 40 when transferring embryos one at a time
BACKGROUND The aim of this theoretical study is to explore the cost-effectiveness of aneuploidy screening in a UK setting for every woman aged under the age of 40 years when fresh and vitrified-warmed embryos are transferred one at a time in a first full cycle of assisted conception. METHODS It is envisaged that a 24-chromosome genetic test for aneuploidy could be used to exclude embryos with...
متن کاملI-20: Towards The Transparent Embryo: Dynamics and Ethics of Comprehensive Preimplantation Genetic Screening
Background: To study the ethical aspects of comprehensive preimplantation genetic screening (PGS) through microarrays and whole genome sequencing Materials and Methods: In order to pinpoint ethical issues regarding comprehensive embryo screening we have first investigated the technical and moral issues by organizing a campus meeting with experts and by a literature study. Subsequently we have i...
متن کاملPreimplantation genetic diagnosis: design or too much design
Preimplantation genetic diagnosis (PGD) is a technique that was first applied in humans in 1990 (Handyside et al., 1990; Verlinsky et al., 1990). Thirty years on an estimated 15000 children have been conceived and born using PGD, a number dwarfed by the huge number of children already conceived via conventional in vitro fertilisation. In contrast to numerous reports on reproductive outcome in c...
متن کاملO-27: Preimplantation Genetic Diagnosis in Prevention of Genetic Diseases -Diagnostic of Spinal Muscular Atrophy (SMA)
Background: Preimplantation genetic diagnosis - PGD is currently an established procedure allowing genetic research of oocyte or embryo before implantation to the uterus. Spinal muscular atrophy (SMA) is a neurodegenerative disorder, being the second most common lethal autosomal recessive disease in Caucasians, after cystic fibrosis. There are three clinically different types of which type I (W...
متن کامل